
EGR 304 Monday, 2/17/2020

1

From the article:
Suppose that there are a hundred and one stones in a certain field. One of them has a
diamond inside it, and, luckily, you have a diamond-detecting device that advertises 99 percent
accuracy. After an hour or so of moving the device around, examining each stone in turn,
suddenly alarms flash and sirens wail while the device is pointed at a promising-looking stone.
What is the probability that the stone contains a diamond?

Prof. dDB’s Analysis:
100 stones with no diamonds, 1 stone with a diamond.
But since the tester is not perfect. I’ll describe this situation with probabilities. . .
Let ܲ(ܺ) be the probability that event ܺ has happened.
Let ܲ(ܤ|ܣ) be the conditional probability of ܣ given that ܤ is true.
Let ାܶ be the event of a test turning out positive, suggesting the stone has a diamond.
Let ܦ be the event of randomly picking the stone with the diamond from the pile.
Let ܦഥ be the event of randomly picking a stone with no diamond from the pile.

What I am given is that. . . ܲ ܦ = 1/101 and ܲ ഥܦ = 100/101.
I am also given ܲ ାܶ ܦ = 99/100 and ܲ ାܶ ഥܦ = 1/100
But what I want to know is ܲ ܦ ାܶ . This is a call for Bayes theorem. (If given ܲ ܤ ܣ
and individual probabilities ܲ ܣ and ܲ(ܤ) then you can find ܲ(ܤ|ܣ) by Bayes theorem.)
Bayes theorem at Wikipedia: https://en.wikipedia.org/wiki/Bayes%27_theorem

Bayes theorem:

Informal discussion at the start of class on the matter of accuracy of measurement and the surprising results when
measuring rare events. The content of this slide is not an official part of the course—will not be tested or graded.

https://www.firstthings.com/article/2016/05/scientific-regress

ܲ ܦ ାܶ =
ܲ ାܶ ܦ ܲ ܦ

ܲ(ାܶ) =
ܲ ܶା ܦ ܲ ܦ

ܲ ାܶ|ܦ ܲ ܦ + ܲ ାܶ ഥܦ (ഥܦ)ܲ
=

99
100

1
101

99
100

1
101 + 1

100
100
101

=
99

199 ≃
1
2

The moral of the story: Accuracy needs to be interpreted in context.
(Also, a senior-graduate level course in stochastic systems is very relevant for an engineer!)

#include <Time.h>
#include <TimeLib.h>

// This program demonstrates how a tic clock can keep relative time

#define NOT_AN_INTERRUPT -1 //Required due to a bug in the IDE
#define TICS_PER_SECOND 60

//Global variables
int led_pin = 13;
int intr_pin = 2;
volatile time_t relativeTime=0;
volatile int tics = 0;

void tic_isr() {
++tics;
if (tics >= TICS_PER_SECOND) {

tics = 0;
++relativeTime; //seconds since reset

}
}

void setup() {
pinMode(led_pin, OUTPUT);
digitalWrite (intr_pin, LOW); // disable internal pull-up resistor
attachInterrupt(digitalPinToInterrupt(intr_pin), tic_isr, RISING);

}

void loop () {
//if relativeTime is even, illuminate the LED, otherwise extinquish it
if (relativeTime % 2 == 0) {

digitalWrite(led_pin, HIGH);
}
else {

digitalWrite(led_pin, LOW);
}

}

Here is another program that uses the same
hardware source of interrupts.

The loop does gadfly output. The relative
time is updated by the interrupt service
routine. The loop()routine and the
interrupt service routine communicate via
global variable relativeTime.

Interrupt
service
routine

1

2

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://www.firstthings.com/article/2016/05/scientific-regress

EGR 304 Monday, 2/17/2020

2

The agenda—understanding interrupt-driven I/O (and by extension, multitasking)

An example to give some context

Memory capabilities needed for subroutines (functions, procedures, interrupts, are types of subroutines)

Sources of interrupts including counter-timer systems

Advantages of using interrupt-driven I/O—so obvious this section is hardly needed.
--Alternatives to interrupt driven I/O are gadfly (uncontrolled—annoying) I/O or various polling techniques,

all of which waste processor cycles prodigiously.
--Interrupts are foundational to object-oriented programming
--Many embedded systems that use interrupts have very little other code to run!

Risks of interrupt-driven I/O
--density limit
--latency and resolution limits
--interval restrictions
--critical regions in code
--deadlock

What happens when you call a function?

Example:

Script filename junk_word.m
% Call a function that makes a display
write_yep;
disp(“OK, now do it again!”)
write_yep;

Function filename write_yep.m
function write_yep
% Writes the word “yep”
disp(“yep”);

Memory capabilities needed for subroutines—stack operations

Command Window
octave:33>

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack

Unused

When Matlab starts the script the
memory is set up as shown.

The stack is a scratch-pad area in
which data may be temporarily
stored. It “grows downward” as it is
used. It is “lifted upwards” when
data is removed from it.

These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

3

4

EGR 304 Monday, 2/17/2020

3

What happens when you call a function?

Example:

Script filename junk_word.m
% Call a function that makes a display
write_yep;
disp(“OK, now do it again!”)
write_yep;

Function filename write_yep.m
function write_yep
% Writes the word “yep”
disp(“yep”);

Command Window
octave:33> junk_word

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
3

Unused

When write_yep executes the first
time a marker (address) is written
on the stack to show where
execution should resume when the
function is done. It should resume
at the third line. Then the program
flow is directed to the first line of
the function

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

What happens when you call a function?

Example:

Script filename junk_word.m
% Call a function that makes a display
write_yep;
disp(“OK, now do it again!”)
write_yep;

Function filename write_yep.m
function write_yep
% Writes the word “yep”
disp(“yep”);

Command Window
octave:33> junk_word
yep

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack

Unused

When write_yep executes the first
time a marker (address) is written
on the stack to show where
execution should resume when the
function is done. It should resume
at the third line. Then the program
flow is directed to the first line of
the function

When the function finishes
executing it pulls the address from
the stack (in this case, “3”) and uses
It to redirect the program flow to
the correct place in the calling
program

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

5

6

EGR 304 Monday, 2/17/2020

4

What happens when you call a function?

Example:

Script filename junk_word.m
% Call a function that makes a display
write_yep;
disp(“OK, now do it again!”)
write_yep;
% end

Function filename write_yep.m
function write_yep
% Writes the word “yep”
disp(“yep”);

Command Window
octave:33> junk_word
yep
OK, now do it again!

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
5

Unused

The second time write_yep
executes, again a marker (address) is
written on the stack to show where
execution should resume when the
function is done. It should resume
at the fifth line. Then the program
flow is directed to the first line of
the function

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

What happens when you call a function?

Example:

Script filename junk_word.m
% Call a function that makes a display
write_yep;
disp(“OK, now do it again!”)
write_yep;
% end

Function filename write_yep.m
function write_yep
% Writes the word “yep”
disp(“yep”);

Command Window
octave:33> junk_word
yep
OK, now do it again!
yep
octave:34>

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
5

Unused

The second time write_yep
executes, again a marker (address) is
written on the stack to show where
execution should resume when the
function is done. It should resume
at the fifth line. Then the program
flow is directed to the first line of
the function

When the function finishes
executing it pulls the address from
the stack (in this case, “5”) and uses
It to redirect the program flow to
the correct place in the calling
program

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

7

8

EGR 304 Monday, 2/17/2020

5

What happens when you call a function that needs parameters?

Example:

Script filename junk_sum.m
% Call a function that adds numbers;
add_two_nums(4,6);
disp("OK, now do it again!")
add_two_nums(9,7);
% end

Function filename add_two_nums.m
function add_two_nums(a,b)
% displays the sum of a + b
disp(a + b);

Command Window
octave:40> junk_sum

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
3
4
6

Unused

Upon being called the return
address is put on the stack and also
the parameters, in the order given.
The stack expands downward as far
as needed.

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

What happens when you call a function that needs parameters?

Example:

Script filename junk_sum.m
% Call a function that adds numbers;
add_two_nums(4,6);
disp("OK, now do it again!")
add_two_nums(9,7);
% end

Function filename add_two_nums.m
function add_two_nums(a,b)
% displays the sum of a + b
disp(a + b);

Command Window
octave:40> junk_sum

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
3
4
6

Unused

Upon being called the return
address is put on the stack and also
the parameters, in the order given.
The stack expands downward as far
as needed.

When the function starts executing
it pulls (copies) the parameters from
the stack in reverse order according
to the list on the first line of the
function. (in this case, b = 6 and
a = 4) and uses those to execute.
The parameters remain in memory
but can no longer be accessed.

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

9

10

EGR 304 Monday, 2/17/2020

6

What happens when you call a function that needs parameters?

Example:

Script filename junk_sum.m
% Call a function that adds numbers;
add_two_nums(4,6);
disp("OK, now do it again!")
add_two_nums(9,7);
% end

Function filename add_two_nums.m
function add_two_nums(a,b)
% displays the sum of a + b
disp(a + b);

Command Window
octave:40> junk_sum
10

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
3
4
6

Unused

Upon being called the return
address is put on the stack and also
the parameters, in the order given.
The stack expands downward as far
as needed.

When the function starts executing
it pulls (copies) the parameters from
the stack in reverse order according
to the list on the first line of the
function. (in this case, b = 6 and
a = 4) and uses those to execute.

When the function is done it pulls
the return address (in this case, “3”)
and transfers program flow to the
calling program.

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

What happens when you call a function that needs parameters?

Example:

Script filename junk_sum.m
% Call a function that adds numbers;
add_two_nums(4,6);
disp("OK, now do it again!")
add_two_nums(9,7);
% end

Function filename add_two_nums.m
function add_two_nums(a,b)
% displays the sum of a + b
disp(a + b);

Command Window
octave:40> junk_sum
10

OK, now do it again!

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
5
9
7

Unused

Upon being called the second time
the return address is put on the
stack and also the parameters, in
the order given. The stack expands
downward as far as needed.

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

11

12

EGR 304 Monday, 2/17/2020

7

What happens when you call a function that needs parameters?

Example:

Script filename junk_sum.m
% Call a function that adds numbers;
add_two_nums(4,6);
disp("OK, now do it again!")
add_two_nums(9,7);
% end

Function filename add_two_nums.m
function add_two_nums(a,b)
% displays the sum of a + b
disp(a + b);

Command Window
octave:40> junk_sum
10

OK, now do it again!

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
5
9
7

Unused

Upon being called the second time
the return address is put on the
stack and also the parameters, in
the order given. The stack expands
downward as far as needed.

When the function starts executing
it pulls (copies) the parameters from
the stack in reverse order according
to the list on the first line of the
function. (in this case, b = 7 and
a = 9) and uses those to execute.
The parameters remain

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

What happens when you call a function that needs parameters?

Example:

Script filename junk_sum.m
% Call a function that adds numbers;
add_two_nums(4,6);
disp("OK, now do it again!")
add_two_nums(9,7);
% end

Function filename add_two_nums.m
function add_two_nums(a,b)
% displays the sum of a + b
disp(a + b);

Command Window
octave:40> junk_sum
10

OK, now do it again!
16

octave:41>

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
5
9
7

Unused

Upon being called the second time
the return address is put on the
stack and also the parameters, in
the order given. The stack expands
downward as far as needed.

When the function starts executing
it pulls (copies) the parameters from
the stack in reverse order according
to the list on the first line of the
function. (in this case, b = 6 and
a = 4) and uses those to execute.
The parameters remain

When the function is done it pulls
the return address (in this case, “5”)
and transfers program flow to the
calling program.

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

13

14

EGR 304 Monday, 2/17/2020

8

What happens when you call a function that. . .

. . . needs parameters and. . .

. . . needs to return a parameter to the calling program?

After the function is done executing it pulls the return address as usual,
but before returning control to the calling program it pushes the return
parameters onto the stack. The returning program knows it must pull
them because of the form of the function call

[return_parameters] = function(parameter_list);

If a function is written such that it produces return parameters they will
always get pushed to the stack before return. The calling program will
pull the parameters off the stack (indeed it must). Pulled parameters will
be stored in the variables indicated by the program call, or if the return
parameters were not directed to a variable by the programmer, they will
be discarded to the bit-bucket.

System memory

Operating sys,
Matlab,

(or Octave) and
other progs.

junk_word.m

write_yep.m

Program data

Stack
5
9
7

Unused

Memory capabilities needed for subroutines—stack operations
These illustrations were done for Matlab code, but the same
applies for any language including assembly, c/c++, Python.

What happens when an interrupt is requested via an interrupt pin?

Step 1) If the pin has been set up to receive interrupts, and if the interrupt is enabled,
an interrupt service request (ISR) bit is set in a special register in the CPU’s hardware.

Step 2) Whatever atomic operation is in progress finishes executing. Then the ISR bit-register is checked.
If no bits are set, execution continues with the next machine instruction as normal, otherwise go to step 3.
Machine instructions and critical regions are atomic operations. (Interrupt service routines are normally critical.)
A critical region is a section of code that runs with interrupts disabled for some reason.
Critical regions may be deliberately created or prevented using disable interrupt and enable interrupt instructions.
In some cases the compiler will automatically create critical regions at the machine instruction level.

Step 3) If one or more ISR bits are set, the highest priority ISR bit will receive attention. The corresponding interrupt
service routine (which must have been set up previously) will be called in a style similar to a subroutine.
All interrupts will be automatically disabled upon recognition of the highest priority interrupt.
A return address is pushed to the stack. In addition, some or all of the CPU’s registers will be pushed to the stack.
The interrupt service routine may only use those registers that have been pushed, or it may push more
registers via its own instructions if needed. The ISR bit will be reset when the first instruction of the
interrupt service routine begins executing. (The interrupt may now be requested—set—again!)

Step 4) The interrupt service routine runs. (Because all interrupts are disabled it will run to
completion without further interruption.) However the interrupt service routine may be programmed to re-
enable any or all other interrupts (dangerous but powerful). Any information the interrupt service routine
needs to manipulate will have to come from either persistent or global variables or I/O operations.

Memory capabilities needed for subroutines—stack operations

15

16

EGR 304 Monday, 2/17/2020

9

What happens when an interrupt is requested via an interrupt pin?
Step 1) If the pin has been set up to receive interrupts, and if the interrupt is enabled,

an interrupt service request (ISR) bit is set in a special register in the CPU’s hardware.

Step 2) Whatever atomic operation finishes executing the ISR bit-register is checked.
If no bits are set, continue with the next machine instruction as normal, otherwise go to step 3.
Machine instructions and critical regions are atomic operations. (Interrupt service routines are normally atomic too.)
A critical region is a section of code that runs with interrupts disabled for some reason.
Critical regions may be deliberately created using disable interrupt and enable interrupt instructions.
In some other cases the compiler will automatically create critical regions at the machine instruction level.

Step 3) If one or more ISR bits are set, the highest priority ISR bit will receive attention. The corresponding interrupt
service routine (which must have been set up previously) will be called in a style similar to a subroutine.
All interrupts will be automatically disabled upon recognition of the highest priority interrupt.
A return address is pushed to the stack. In addition, some or all of the CPU’s registers will be pushed to the stack.
The interrupt service routine may only use those registers that have been pushed, or it may push more
registers via its own instructions if needed. The ISR bit will be reset when the first instruction of the
interrupt service routine begins executing. (The interrupt may now be requested—set—again!)

Step 4) The interrupt service routine normally runs atomically. (Because all interrupts are disabled it will run to
completion without further interruption.) However the interrupt service routine may be programmed to re-
enable any or all other interrupts (dangerous but powerful). Any information the interrupt service routine
needs to manipulate will have to come from either persistent or global variables or I/O operations.

Step 5) The interrupt service routine finishes with a machine-level “return from interrupt” command.
This command pulls the former contents of all CPU registers that were initially pushed to the stack and
returns these registers back to their original state.
Then the command returns program control back to the routine that was interrupted. The routine that
was interrupted will continue executing as if nothing happened, except it has been delayed a small amount.

Step 6) The normal programming of the CPU can access processing that was performed by the interrupt service
routines by using global variables.

Memory capabilities needed for subroutines—stack operations

The agenda—understanding interrupt-driven I/O (and by extension, multitasking)

An example to give some context

Memory capabilities needed for subroutines (functions, procedures, interrupts, are types of subroutines)

Sources of interrupts including counter-timer systems

Advantages of using interrupt-driven I/O—so obvious this section is hardly needed.
--Alternatives to interrupt driven I/O are gadfly (uncontrolled—annoying) I/O or various polling techniques,

all of which waste processor cycles prodigiously.
--Interrupts are foundational to object-oriented programming
--Many embedded systems that use interrupts have very little other code to run!

Risks of interrupt-driven I/O
--density limit
--latency and resolution limits
--interval restrictions
--critical regions in code
--deadlock

17

18

EGR 304 Monday, 2/17/2020

10

Hardware interrupt
Arrives via an I/O port connected to the CPU

Sources of interrupts
Detail Slide

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)

Sources of interrupts

19

20

EGR 304 Monday, 2/17/2020

11

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Sources of interrupts

Illustration is from the AVR datasheet

The counter-timer systems is configured via a set of
registers. Registers are also readable so that the
main program (or loop) has a way to respond to the
counted or timed events.

Detail Slide

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Software interrupt
Is triggered by a program instruction. Example in C: SWI Printer_Status

Here Printer_Status is a “label” (A symbol that is defined as an address to the interrupt service routine.)

Sources of interrupts

21

22

EGR 304 Monday, 2/17/2020

12

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Software interrupt
Is triggered by a program instruction. E.g. SWI <label>

In CPUs that do not have hardware-supported privilege rings (e.g Arduino) a
software interrupt is tantamount to a normal subroutine call except
that it also stacks ALL CPU registers—a minor convenience sometimes.

Sources of interrupts

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Software interrupt
Is triggered by a program instruction. E.g. SWI <label>

In CPUs that do not have hardware-supported privilege rings (e.g Arduino) a
software interrupt is tantamount to a normal subroutine call except
that it also stacks ALL CPU registers—a minor convenience sometimes.

In CPUs that have hardware-supported privilege rings (e.g. Raspberry Pi.)
software interrupts are the only way to call privileged routines because the CPU state and all hardware
resources are protected by stacking ALL registers to a hardware-protected stack. (A lower privileged
routine has no access to CPU registers, ports, or memory used by higher privileged routines.)

Sources of interrupts

23

24

EGR 304 Monday, 2/17/2020

13

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Software interrupt
Is triggered by a program instruction. E.g. SWI <label>

In CPUs that do not have hardware-supported privilege rings (e.g Arduino) a
software interrupt is tantamount to a normal subroutine call except
that it also stacks ALL CPU registers—a minor convenience sometimes.

In CPUs that have hardware-supported privilege rings (e.g. Raspberry Pi.)
software interrupts are the only way to call privileged routines because the CPU state and all hardware
resources are protected by stacking ALL registers to a hardware-protected stack. (A lower privileged
routine has no access to CPU registers, ports, or memory used by higher privileged routines.)

Sources of interrupts

Raspbian takes all interrupt resources to
itself. Python has no inter. access whatever.
Access to interrupts is only via the OS (slow).

Arduino has no software interrupt
instruction. However one can write to a
hardware interrupt pin and thus create the
equivalent action. But why not just use a
normal call? There are no privilege rings to
cut through.

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Software interrupt
Is triggered by a program instruction. E.g. SWI <label>

In CPUs that do not have hardware-supported privilege rings (e.g Arduino) a
software interrupt is tantamount to a normal subroutine call except
that it also stacks ALL CPU registers—a minor convenience sometimes.

In CPUs that have hardware-supported privilege rings (e.g. Raspberry Pi.)
software interrupts are the only way to call privileged routines because the CPU state and all hardware
resources are protected by stacking ALL registers to a hardware-protected stack. (A lower privileged
routine has no access to CPU registers, ports, or memory used by higher privileged routines.)

Exception (a.k.a. trap)
Arrives from inside the CPU via hardware but not via a complete port. It calls an interrupt service routine as for any intr.

Sources of interrupts

Raspbian takes all interrupt resources to
itself. Python has no inter. access whatever.
Access to interrupts is only via the OS (slow).

Arduino has no software interrupt
instruction. However one can write to a
hardware interrupt pin and thus create the
equivalent action. But why not just use a
normal call? There are no privilege rings to
cut through.

25

26

EGR 304 Monday, 2/17/2020

14

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Software interrupt
Is triggered by a program instruction. E.g. SWI <label>

In CPUs that do not have hardware-supported privilege rings (e.g Arduino) a
software interrupt is tantamount to a normal subroutine call except
that it also stacks ALL CPU registers—a minor convenience sometimes.

In CPUs that have hardware-supported privilege rings (e.g. Raspberry Pi.)
software interrupts are the only way to call privileged routines because the CPU state and all hardware
resources are protected by stacking ALL registers to a hardware-protected stack. (A lower privileged
routine has no access to CPU registers, ports, or memory used by higher privileged routines.)

Exception (a.k.a. trap)
Arrives from inside the CPU via hardware but not via a complete port. It calls an interrupt service routine as for any intr.

The request is handled like a software interrupt (controlled access to privileged resources).
The return usually is to the operating system, which proceeds to kill the offending program.
Examples: Corrupted OS file, divide by zero error. (If not configured, ignored.)

Sources of interrupts

Raspbian takes all interrupt resources to
itself. Python has no inter. access whatever.
Access to interrupts is only via the OS (slow).

Arduino has no software interrupt
instruction. However one can write to a
hardware interrupt pin and thus create the
equivalent action. But why not just use a
normal call? There are no privilege rings to
cut through.

Detail Slide

Hardware interrupt
Arrives via an I/O port connected to the CPU

Some ports have external GPIO pins that can be set up to support interrupts (e.g. pin 2 in the previous example)
Additionally, virtually all microcontrollers and SoC systems have internal ports that can generate interrupts.

These internal ports are connected to counters and compare registers and form a
so-called counter-timer-system.

Software interrupt
Is triggered by a program instruction. E.g. SWI <label>

In CPUs that do not have hardware-supported privilege rings (e.g Arduino) a
software interrupt is tantamount to a normal subroutine call except
that it also stacks ALL CPU registers—a minor convenience sometimes.

In CPUs that have hardware-supported privilege rings (e.g. Raspberry Pi.)
software interrupts are the only way to call privileged routines because the CPU state and all hardware
resources are protected by stacking ALL registers to a hardware-protected stack. (A lower privileged
routine has no access to CPU registers, ports, or memory used by higher privileged routines.)

Exception (a.k.a. trap) Arduino has no exception interrupts

Arrives from inside the CPU via hardware but not via a complete port. It calls an interrupt service routine as for any intr.
The request is handled like a software interrupt (controlled access to privileged resources).

The return usually is to the operating system, which proceeds to kill the offending program.
Examples: Corrupted OS file, divide by zero error. (If not configured, ignored.)

Sources of interrupts

Raspbian takes all interrupt resources to
itself. Python has no inter. access whatever.
Access to interrupts is only via the OS (slow).

Arduino has no software interrupt
instruction. However one can write to a
hardware interrupt pin and thus create the
equivalent action. But why not just use a
normal call? There are no privilege rings to
cut through.

SUMMARY SLIDE

27

28

